Mathematics-Monster.com
(#mm)

menu

Solving a Quadratic Equation Using the Quadratic Formula
(KS4, Year 10)

homesitemapquadratic equationssolving quadratic equations using the quadratic formula
The quadratic formula is a way of solving a quadratic equation. Consider a quadratic equation in standard form:quadratic_equationSolving the quadratic equation means finding the values of x, called roots, that make this equation true (i.e., makes the left hand side equal to 0.) The formula below will find the two roots of the equation:quadratic_equation_formulaThere are two roots because the ± symbol means consider it as a + one time and as a another time.

How to Solve Quadratic Equations Using the Quadratic Formula

Solving a quadratic equation using the quadratic formula is easy.

Question

Solve the quadratic equation shown below using the quadratic formula. quadratic equation formula example

Step-by-Step:

1

Compare the quadratic equation in the question with the standard form.
2x2 −5x + 2 = 0 ⇔ ax2 + bx + c = 0
Find the values of a, b and c.
a = 2, b = −5, c = 2

2

Use the formula.
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3

Substitute a, b and c into the formula. In our example, a = 2, b = −5 and c = 2.

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(2)}}{2(2)}$$

$$\:\:\:\: = \frac{5 \pm \sqrt{(-5 \times -5) - 4 \times 2 \times 2}}{2 \times 2}$$

$$\:\:\:\: = \frac{5 \pm \sqrt{25 - 16}}{4}$$

$$\:\:\:\: = \frac{5 \pm \sqrt{9}}{4}$$

$$\:\:\:\: = \frac{5 \pm 3}{4}$$

4

Find the root that comes from turning the ± into a +.

$$x = \frac{5 + 3}{4}$$

$$\:\:\:\: = \frac{8}{4}$$

$$\:\:\:\: = 8 \div 4$$

$$\mathbf{x = 2}$$

x = 2 is a root of the quadratic equation.

5

Find the root that comes from turning the ± into a −.

$$x = \frac{5 - 3}{4}$$

$$\:\:\:\: = \frac{2}{4}$$

$$\mathbf{x = \frac{1}{2}}$$

x = 12 is a root of the quadratic equation.

Answer:

We have solved the quadratic equation: x = 12, x = 2.

Lesson Slides

Sometimes quadratic equations have repeated roots: the same value of x solves the quadratic equation twice. The slider below shows another real example of how to solve a quadratic equation using the quadratic formula.

2 Roots

Quadratic equations have 2 roots, and the quadratic equation finds both of them. Look closely at the formula, and you'll see a ± sign:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
This means it is + one time, and − the other. This gives 2 roots:

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

The Discriminant

The term in the formula that appears in a square root is called the discriminant:
$$b^2 - 4ac$$
It discriminates between the 3 possible cases for the roots of a quadratic equation. We can visualize this by looking at a graph of a quadratic equation. The roots are the points where the curve crosses the horizontal x-axis.
  • b2 − 4ac > 0: there are 2 real, distinct roots. 2_roots_distinct
  • b2 − 4ac = 0: there is one repeated root. 2_roots_repeated
  • b2 − 4ac < 0: there are 2 complex roots. 2_roots_complex

Beware

Be Careful with Signs

a, b and c may be negative. Make sure you remember this when inserting them into the equation - write them inside brackets if need be.

Interactive Widget

You can use this interactive widget to create a graph of your quadratic equation. Use the buttons to change the values of the quadratic equation.
Change the Equation
y
x2
x
y-intercept
author logo

This page was written by Stephen Clarke.

You might also like...

Help Us Improve Mathematics Monster

  • Do you disagree with something on this page?
  • Did you spot a typo?
Please tell us using this form.

Find Us Quicker!

  • When using a search engine (e.g., Google, Bing), you will find Mathematics Monster quicker if you add #mm to your search term.

Share This Page

share icon

If you like Mathematics Monster (or this page in particular), please link to it or share it with others.

If you do, please tell us. It helps us a lot!

Create a QR Code

create QR code

Use our handy widget to create a QR code for this page...or any page.