The Lesson
A function and its inverse function can be plotted on a graph. If the function is plotted as y = f(x), we can reflect it in the line y = x to plot the inverse function y = f−1(x).
How to Find the Inverse of a Function Using a Graph
Finding the inverse of a function using a graph is easy.Question
Find the inverse function of the function plotted below.
Step-by-Step:
1
Plot the function on a graph.

How to Plot a Function
The function is a linear equation and appears as a straight line on a graph.-
The constant term gives the y-intercept
In our example, the y-intercept is 1. The line crosses the y-axis at 1.
-
The coefficient of the x term gives the slope of the line.
In our example, there is no number written in front of the x. It has an implicit coefficient of 1.
The line has a slope of 1. The line will go up by 1 when it goes across by 1.
2
Plot the line y = x on the same graph.
The line y = x is a 45° line, halfway between the x-axis and the y-axis.

3
Reflect the line y = f(x) in the line y = x.
Each point on the reflected line is the same perpendicular distance from the line y = x as the original line.
The reflected line is the graph of the inverse function.

4
Find the equation of the inverse function.
-
The y-intercept is −1.
-
The slope is 1.
y = slope x + y-intercept
y = 1x + −1
Answer:
The inverse of the function f(x) = x + 1 is: f−1(x) = x − 1.What Is an Inverse Function?
An inverse function is a function that reverses another function. If a function f relates an input x to an output f(x)....jpg)
_to_x.jpg)
f(2) = 3
...the inverse function f−1 relates 3 back to 2...
f−1(3) = 2
An inverse function is denoted f−1(x).
How To Reflect a Function in y = x
To find the inverse of a function using a graph, the function needs to be reflected in the line y = x. By reflection, think of the reflection you would see in a mirror or in water:
