The Lesson
The equation of a circle (centered on the origin) is in the form:
- x and y are the Cartesian coordinates of points on the (boundary of the) circle.
- r is the radius of the circle.

Real Examples of Equations of Circles
It is easier to understand the equation of a circle with examples.-
A circle with a radius of 4 will have the equation:
-
A circle with a radius of 2 will have the equation:
-
A circle with a radius of 9 will have the equation:
Understanding the Equation of a Circle
A circle is a set of points. Each point can be described using Cartesian coordinates (x, y). The equation of a circle x2 + y2 = r2 is true for all points on the circle. It gives the relationship between the x-coordinate and y-coordinate of each point on the circle and the radius of the circle. Consider a circle with a radius of 2. Its equation is:
x2 + y2 = 4
Let us consider some points on the circle.
(2, 0)
Consider the point at (2, 0). It has a x-coordinate of 2 and a y-coordinate of 0.
22 + 02 = 4
The equation is satisfied ✔.
(√2, √2)
Consider the point at (√2, √2). It has a x-coordinate of √2 and a y-coordinate of √2.
√22 + √22 = 2 + 2 = 4
Again, the equation is satisfied ✔.
Any point on the circle would satisfy the equation.
Beware
The Circle Must Be Centered at the Origin
For this equation to work, the circle must be centered at the origin of the graph:

Read more about how to find the equation of a circle not centered at the origin
Getting the Equation Right
The equation of a circle must have an x2 term and a y2 added together. These is not the equations of a circle:
